Stability analysis in the Perturbed Robe's Finite Straight Segment model under the effect of Viscosity

Dr. Bhavneet Kaur

Associate Professor Department of Mathematics Lady Shri Ram College for Women University of Delhi, India

August 31, 2022

・ロト ・周ト ・ヨト ・ヨト

ъ

Dr. Bhavneet Kaur Lady Shri Ram College for Women (DU) Stability analysis in the Perturbed Robe's...

Figure 1: Configuration

Considering all above forces, Viscosity, and perturbation in the Coriolis and centrifugal forces, the equations of motion in rotating coordinate system Oxyz with dimensionless variables are:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{array}{l} \ddot{x} - 2n\phi_1 \dot{y} = -\alpha \dot{x} + W_x, \\ \ddot{y} + 2n\phi_1 \dot{x} = -\alpha \dot{y} + W_y, \\ \ddot{z} = -\alpha \dot{z} + W_z, \end{array}$$
(1)

where

$$W = \begin{cases} {}_{l}W & \text{when } l \neq 0, \\ {}_{0}W = \lim_{l \to 0} ({}_{l}W) & \text{when } l = 0, \end{cases}$$

$${}_{l}W = \frac{1}{2}n^{2}\phi(x^{2} + y^{2}) - \frac{k}{2}[(x + \mu)^{2} + y^{2} + z^{2}] + \frac{\mu}{2l}\log\left(\frac{r_{1} + r_{2} + 2l}{r_{1} + r_{2} - 2l}\right),$$

$${}_{0}W = \frac{1}{2}n^{2}\phi(x^{2} + y^{2}) - \frac{k}{2}[(x + \mu)^{2} + y^{2} + z^{2}] + \frac{\mu}{\sqrt{(x - 1 + \mu)^{2} + y^{2} + z^{2}}},$$

$$k = \frac{4\pi}{3}\rho_{1}\left(1 - \frac{\rho_{1}}{\rho_{3}}\right), \text{ density parameter}$$

$$n = 1 + \frac{l^{2}}{2}, \ l << 1, \ \mu = m_{2}^{*}, \ 0 < \mu < 1,$$

$$r_{1}^{2} = (x - 1 + \mu + l)^{2} + y^{2} + z^{2},$$

$$r_{2}^{2} = (x - 1 + \mu - l)^{2} + y^{2} + z^{2},$$

$$\phi_{1} = 1 + \epsilon_{1}, \ |\epsilon_{1}| \ll 1 \text{ and } \phi = 1 + \epsilon, \ |\epsilon| \ll 1.$$

Here, ϕ_1 and ϕ are the perturbing parameters in the Coriolis and centrifugal forces respectively and α , a positive constant, is the viscosity parameter. Two Collinear equilibrium points: $L_{r_1}(x_1, 0, 0)$ and $L_{r_2}(x_2, 0, 0)$,

$$x_1 = -\mu + \frac{\mu(1+l^2)}{1-k+2\mu+l^2(1+4\mu)}\epsilon,$$
(2)

$$x_{2} = \frac{1}{2(k-1-l^{2})} \left[(1+l^{2})(\mu-2) + 2k(1-\mu) - \sqrt{B+2l^{2}[2+2k^{2}+2k(\mu-2)-4\mu+\mu^{2}]} \right] + q\epsilon,$$
(3)

with $B = \mu(4k + \mu - 4)$ and q is given by Eq. (4).

$$q = \frac{-l^2 \left(\frac{-2k^3 - 2k^2 \mu + 6k^2 - k\mu^2 + 2k\mu - k\mu\sqrt{B} - 6k + 2}{2(k-1)^2\sqrt{B}} + \frac{-2k\mu - \sqrt{B} + 2k + \mu - 2}{2(k-1)}\right) - \frac{\left(-2k\mu - \sqrt{B} + 2k + \mu - 2\right)}{2(k-1)}}{l^2 \left(1 - \frac{f}{\sqrt{B}\left(\sqrt{B} + \mu\right)^5}\right) + \frac{16(k-1)^3\mu}{\left(\sqrt{B} + \mu\right)^3} - k + 1},$$
 (4)

$$\begin{split} f = & 32(k-1)^2 \mu \big(3k^3 \mu - k^3 \sqrt{B} + 9k^2 \mu^2 - 9k^2 \mu + 3k^2 \mu \sqrt{B} + 3k^2 \sqrt{B} + 3k \mu^3 - 9k \mu^2 + 3k \mu^2 \sqrt{B} \\ & + 9k \mu - 3k \mu \sqrt{B} - 3k \sqrt{B} + \sqrt{B} - 3\mu \big). \end{split}$$

The point $L_{r_1}(x_1, 0, 0)$ is always an equilibrium point, whereas $L_{r_2}(x_2, 0, 0)$ will be an equilibrium point provided $k > 1 + l^2$.

Dr. Bhavneet Kaur Lady Shri Ram College for Women (DU) Stability analysis in the Perturbed Robe's...

Infinite Non-Collinear equilibrium points: $L_{r_3}(x, y, 0)$ $(y \neq 0)$, which lie within the spherical shell as well as on the circle given by following equation

$$(1 - \mu - x)^{2} + y^{2} = \left[\left(1 - \frac{1}{3}\epsilon \right) \left(1 - \frac{1}{3}l^{2} \right) \right]^{2}$$
(5)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 のへの

provided $k = (1 + \epsilon)(1 - \mu)(1 + l^2).$

To sum up, a non-collinear equilibrium point has coordinates $L_{r_3}(a, b, 0)$, where

$$a = 1 - \mu - \left(1 - \frac{\epsilon}{3}\right) \left(1 - \frac{1}{3}l^2\right) \cos \theta, \ b = \left(1 - \frac{\epsilon}{3}\right) \left(1 - \frac{1}{3}l^2\right) \sin \theta.$$

Two Out-of-plane equilibrium points: $L_{r_4,r_5}\left(\frac{k}{\phi}(1-l^2), 0, \pm \sqrt{b_1^2 - a_1^2}\right)$, $a_1 = 1 - \mu + k(\epsilon - 1)$ and $b_1 = \left(-\frac{\mu}{k} + \frac{\mu l^2}{k - \phi(1-\mu)}\right)^{1/3}$ exist provided k < 0 and $k + \mu + 2\mu l^2 > 0$.

Figure 2: Bifurcation diagram for Theorem 1 showing the stability conditions for the equilibrium position L_{r_1} in μk -plane.

Theorem 1 (Stability criterion for L_{r_1})

Let $k \neq 1 + 2\mu$ and $c_2 \neq c_3$.

- For $k < 1 + 2\mu 3\mu^2$, the equilibrium position $L_{r_1}(x_1, 0, 0)$ of the system (1) is asymptotically stable if $c_1 < \epsilon < \min\{c_2, c_3\}$ and stable if $\epsilon = c_1$ or $\epsilon = \min\{c_2, c_3\}$.
- For 1 + 2μ 3μ² < k < 1 + 2μ, the equilibrium position L_{r1}(x₁, 0, 0) for the system (1) is asymptotically stable if max{c₁, c₃} < ε < c₂ and stable if ε = c₂ or ε = max{c₁, c₃}.
- For $k > 1 + 2\mu + 6\mu^2$, the equilibrium position $L_{r_1}(x_1, 0, 0)$ for the system (1) is asymptotically stable if $\epsilon < \min\{c_1, c_2, c_3\}$ and stable if $\epsilon = \min\{c_1, c_2, c_3\}$.

Where

$$c_{1} = -\frac{\mu + k + 2\mu l^{2}}{3\mu A_{0}},$$

$$c_{2} = -\frac{l^{2}(1 + 4\mu) + 1 + 2\mu - k}{1 + 6\mu A_{0}},$$

$$c_{3} = -\frac{l^{2}(1 - 2\mu) + 1 - \mu - k}{1 - 3\mu A_{0}},$$

$$A_{0} = \frac{\mu}{1 + 2\mu - k}.$$

(6)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○ ○ ○ ○ ○

Dr. Bhavneet Kaur Lady Shri Ram College for Women (DU) Stability analysis in the Perturbed Robe's...

Figure 3: Bifurcation diagram for Theorem 2 showing the stability conditions for the equilibrium position L_{r_2} in μk -plane.

• • = • • = •

-

Where

$$c_{1}' = \frac{A_{2} - 2A_{1} - k}{A_{4}}, \ c_{2}' = \frac{k - 4A_{1} + 2A_{2} - 1 - l^{2}}{A_{3}}, \ c_{3}' = \frac{k + 2A_{1} - A_{2} - 1 - l^{2}}{A_{4}}, \tag{7}$$

・ロト ・四ト ・ヨト ・ヨト

∃ 990

with

$$A_{1} = \frac{4\mu(k-1)^{3}}{(\mu+\sqrt{B})^{3}}, A_{3} = 1 + \frac{96\mu(k-1)^{4}}{(\mu+\sqrt{B})^{6}}, A_{4} = 1 - \frac{48\mu(k-1)^{4}}{(\mu+\sqrt{B})^{6}},$$

$$A_{2} = \frac{1}{\sqrt{B}\left(\sqrt{B}+\mu\right)^{5}} \left[16(k-1)^{2}l^{2}\mu \left\{ 3(k-1)\mu \left(k^{2}+k\left(\sqrt{B}-2\right)+1\right)+3k\mu^{3}+3k\mu^{2}\left(\sqrt{B}+3k-3\right)+(k-1)^{3}\left(-\sqrt{B}\right) \right\} \right].$$

Non-collinear equilibrium points : Unstable Out-of-plane equilibrium points : Unstable

- Robe, H. A. G. (1977). A new kind of three-body problem, Celes. Mech. Dyn. Astron., Vol. 16 pp. 343-351
- Kumar, D., Kaur, B., Chauhan, S. and Kumar, V. (2019). Robe's restricted three-body problem when one of the primaries is a finite straight segment, Int. J. of Non-Linear Mech., Vol. 109, pp. 182–188.
- Clark, R.N.: Control system dynamics. Cambridge University Press, New York, (1996).
- McCuskey, S.W.: Introduction to Celestial Mechanics. Addison- Wesely Publishing Company, Inc., New York (1963).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Plastino, A.R., Plastino, A.: Robe's restricted three-body problem revisited. Celes. Mech. Dyn. Astron. 61 197–206 (1995).
- Hallan, P.P., Rana, N.: The existence and stability of equilibrium points in the Robe's restricted three-body problem. Celes. Mech. Dyn. Astron. **79**(2), 145–155 (2001).